
© 2015 Visual Components Oy | PAGE 1 OF 9 |

VISUAL COMPONENTS [PYTHON API]

Conditions and Signals
Visual Components 4.0 | Version: February 24, 2017

When using Python API to write application and component scripts, you may
need to define conditions. A condition allows you to make a decision and
control the flow of execution in a script. For example, you may want a robot to
execute a process if a condition is exists, otherwise the robot would either wait
or perform a different process.

Conditions can be tested immediately or triggered by an object or event. For
example, signals can be used to evaluate a condition and stop or resume the
main function of a script.

In this tutorial you learn how use conditions, events and triggers to control the
execution of scripts.

Support
support@visualcomponents.com

Community
community.visualcomponents.net

mailto:support%40visualcomponents.com?subject=
https://community.visualcomponents.net

| PAGE 2 OF 9 | GETTING STArTEd

Getting Started
1. Open the ConditionsAndSignalsStart.vcmx file for this tutorial.

2. Click the Modeling tab, and then in the Component Graph panel, select the Behaviors
check box, and then expand the component node tree.

3. Run the simulation, verify the component creates parts that move along a path, and
then reset the simulation.

The component has a link to support the moving of parts from one end to the other via a
platform. All you need to do is add the logic for moving the platform when parts reach a
sensor.

GETTING STArTEd | PAGE 3 OF 9 |

4. In the Component Graph panel, select the root node, and then add a Python Script
behavior. The script editor will automatically open when you add the behavior.

5. In the script editor, create variables for the servo controller in the root node, and the
path and two signals in the Link1 node.

from vcScript import *

comp = getComponent()

servo = comp.findBehaviour("ServoController")

servo_path = comp.findBehaviour("ServoPath")

servo_sensor_signal = comp.findBehaviour("ServoSensorSignal")

part_entering_signal = comp.findBehaviour("ComponentEnteringSignal")

NOTE! The ServoSensorSignal is a Component Signal behavior used to identify what
component triggers a sensor in ServoPath. The ComponentEnteringSignal is a Boolean
Signal behavior used as a transition signal to identify when a component enters and leaves
ServoPath.

6. In the OnRun event, use a conditional if statement to make a decision: if the value of
the sensor signal is not None, move the first joint assigned to the servo controller to
600mm, else print a message that there is no component at the sensor.

def OnRun():

 if servo_sensor_signal.Value != None:

 servo.moveJoint(0,600.0)

 else:

 print "Component not at sensor"

7. Compile the code, and then run the simulation. The platform will not move because
the script evaluates the condition of the if statement immediately and before a part
triggers the sensor. As a result, the condition of the if statement is False. Another
reason why the platform does not move is because the script does not know if the
value of the signal has changed from None to a vcComponent object.

8. Reset the simulation.

| PAGE 4 OF 9 | CONdITIONS

Conditions
In most cases, the first line of code in a new Python Script behavior imports all methods from
the vcScript module. Two methods in vcScript that can be used to control the execution of a
script are condition() and triggerCondition().

The condition() method allows you to delay the execution of a script until a called function
returns a True value. The evaluation of that condition is immediate and continuous. That is,
the method will continue to call the function until it returns a True value. The function can be
defined in the same script or inlined by using a lambda operator.

1. In the script editor, OnRun event, replace the if statement with a condition() method.

def OnRun():

 condition(lambda: servo_sensor_signal.Value != None)

 print "Component reached sensor"

 servo.moveJoint(0,600.0)

2. Compile the code, and then enabled Trace Execution. This will allow you to know
what line of code is being executed in the script.

3. Run the simulation. The platform will not move because the function of the condition
never returns a True value. The script has no way of knowing if the value of the sensor
signal has changed during the simulation. One way for a signal to communicate its
value to other behaviors is to call its signal() method.

4. Reset the simulation.

CONdITIONS | PAGE 5 OF 9 |

5. In the script editor, OnRun event, signal the value of the sensor signal. The value of
the signal would still be None, so pass the component of the script as an optional
argument for testing purposes.

def OnRun():

 servo_sensor_signal.signal(comp)

 condition(lambda: servo_sensor_signal.Value != None)

 print "Component reached sensor"

 servo.moveJoint(0,600.0)

6. Compile the code, and then run the simulation. The platform will move but not wait
for a part to trigger the sensor.

7. Reset the simulation.

The triggerCondition() method is like the condition() method, but evaluates its condition
when triggered by a signal or other behavior connected to the script.

8. In the script editor, OnRun event, replace condition with triggerCondition, and then
compile the code.

9. Run the simulation. The platform will not move because the condition is never
evaluated because the script currently has no triggers.

10. Reset the simulation.

| PAGE 6 OF 9 | TrIGGErS

Triggers
A trigger can be any signal or behavior connected to a Python Script behavior.

1. In the Component Graph panel, select the ComponentEnteringSignal behavior, and
then add the Python Script behavior as a connection.

2. Run the simulation, verify the platform moves, and then reset the simulation. The
platform did not move until a part transitioned into the servo path, thereby the path
signal triggered the evaluation of the condition in the script. The platform, however,
moved before the part reached the sensor.

3. Reset the simulation, and then connect the Python Script to the ServoSensorSignal
behavior.

TrIGGErS | PAGE 7 OF 9 |

4. In the script editor, OnRun event, comment the line that signals the value of the
sensor signal, and then compile the code. That line of code is now redundant since
the script is connected to the signal and receives its signal events.

def OnRun():

 #servo_sensor_signal.signal(comp)

 triggerCondition(lambda: servo_sensor_signal.Value != None)

 print "Component reached sensor"

 servo.moveJoint(0,600.0)

5. Run the simulation, verify the platform starts to move when a part triggers the sensor,
and then reset the simulation.

You can use the getTrigger() method in vcScript to evaluate the last recorded trigger of a
script. This is helpful if you have a script that is connected to many signals and you need to
specify which trigger is required for a condition to be true.

6. In the script editor, replace triggerCondition with condition and use the getTrigger()
method to verify the connected sensor signal updates the script, and then compile
the code.

def OnRun():

 #servo_sensor_signal.signal(comp)

 condition(lambda: getTrigger() == servo_sensor_signal)

 print "Component reached sensor"

 servo.moveJoint(0,600.0)

7. Run the simulation, verify the platform starts to move when a part triggers the sensor,
and then reset the simulation.

| PAGE 8 OF 9 | SIGNAL EVENTS

Signal Events
Signals connected to a script can be used to control the execution of a script. For example,
you can use the OnSignal event to listen for signal value changes during a simulation.

1. In the script editor, clear the OnRun event and add a pass statement, and then compile
the code. This clears the history of OnRun event in the script.

def OnRun():

 pass

2. In the OnRun event, create a while loop that performs the following process:

 ▪ Wait for a part to trigger the sensor, and then stop the path.

 ▪ Move the platform to the other end of the component, and then restart the path.

 ▪ Wait for the part to leave the platform, and then stop the path.

 ▪ Move the platform back to the other end of the component, and then restart the
path.

def OnRun():

 while True:

 triggerCondition(lambda: getTrigger()==servo_sensor_signal)

 servo_path.Enabled = False

 servo.moveJoint(0,600.0)

 servo_path.Enabled = True

 condition(lambda: part_entering_signal.Value == False)

 servo_path.Enabled = False

 servo.moveJoint(0,0.0)

 servo_path.Enabled = True

3. Compile the code, and then run the simulation to verify the platform moves parts
back and forth, and then reset the simulation.

rEVIEw | PAGE 9 OF 9 |

Instead of using the condition() and triggerCondition() methods, you can redefine the process
to use signal events. For example, you can use signal events to suspend and resume the
OnRun event, which is the main function of a Python Script.

4. In the script editor, modify the code so that the OnSignal and OnRun events work
together to move parts, and then compile the code. One solution is to create two
subprocesses for moving the platform and controlling its path.

def OnSignal(signal):

 if signal == servo_sensor_signal:

 if signal.Value != None:

 resumeRun()

 elif signal == part_entering_signal:

 if signal.Value == False:

 resumeRun()

def OnRun():

 while True:

 suspendRun()

 servo_path.Enabled = False

 servo.moveJoint(0,600.0)

 servo_path.Enabled = True

 suspendRun()

 servo_path.Enabled = False

 servo.moveJoint(0,0.0)

 servo_path.Enabled = True

5. Run the simulation, verify the platform moves parts back and forth, and then reset
the simulation.

review
In this tutorial you learned how to create conditions in a component script for executing
processes. You know how to connect and use signals as triggers for evaluating conditions
and how signal events can control the main function of a script. You also know how to use a
lambda operator to inline expressions.

	Getting Started
	Conditions
	Triggers
	Signal Events
	Review

