
© 2015 Visual Components Oy | PAGE 1 OF 8 |

VISUAL COMPONENTS [PYTHON API]

Highlight Components
Visual Components 4.0 | Version: February 28, 2017

During a simulation you may want to highlight components to provide
important visual indicators. For example, you may want to highlight the stage
of a component in a product life cycle or color code components in a workcell.
It is also possible to highlight the state of a component, for example whether a
machine or resource is active, idle or broken.

In this tutorial you learn how to:

▪▪ Assign materials to components contained by paths and other
containers.

▪▪ Use signals and events to edit components transitioning in and out of
containers.

▪▪ Use a dictionary to store the property values of components.

Support
support@visualcomponents.com

Community
community.visualcomponents.net

mailto:support%40visualcomponents.com?subject=
https://community.visualcomponents.net

| PAGE 2 OF 8 | Getting Started

Getting Started
1.	 Clear the layout of the 3D world.

2.	 In the eCatalog panel, Collections view, under Models by Type, click Component
Templates.

3.	 Add a Feeder Template to the 3D world, and then add and connect a Conveyor
Template to the feeder in the 3D world.

4.	 With the conveyor selected in the 3D world, click the Modeling tab, and then add a
Python Script behavior.

5.	 Add a Boolean Signal behavior, and then connect the signal to the Python Script,
so the signal can be a trigger in the script.

Getting Started | PAGE 3 OF 8 |

6.	 In the Component Graph panel, select the MainPath behavior, and then in the
Properties panel, set TransitionSignal to the signal you created in step 5.

A path with a transition signal allows you to know when a part enters and leaves the path
through its ports.

| PAGE 4 OF 8 | Highlight First In, First Out

Highlight First In, First Out
It is possible to highlight the first component that enters a path.

1.	 In the script editor, define variables for the component, main application, a yellow
material, path and its transition signal.

from vcScript import *

app = getApplication()

yellow = app.findMaterial("yellow")

comp = getComponent()

path = comp.findBehaviour("MainPath")

transition_signal = path.TransitionSignal

2.	 In the OnRun event, create a while loop that changes the material of the first part that
enters the path, and then compile the code.

def OnRun():

 while True:

 if transition_signal.Value == True:

 part = path.getComponent(0)

 part.NodeMaterial = yellow

 part.MaterialInheritance = VC_MATERIAL_FORCE_INHERIT

 delay(0.1)

 else:

 delay(0.1)

3.	 Run the simulation, verify the first part that enters the path is highlighted yellow, and
then reset the simulation.

Highlight All | PAGE 5 OF 8 |

Highlight All
It is possible to highlight all components contained by a path.

1.	 In the 3D world, select the feeder.

NOTE! You do not need to close the script editor of the conveyor when modeling a different
component.

2.	 In the Component Graph panel, select the root node, and then in the Component
Properties panel, click the ComponentCreator tab, and then set Interval to 2.

3.	 In the script editor, OnRun event, modify the code to change the material of all
components contained by the path when its transition signal value is True, and then
compile the code.

def OnRun():

 while True:

 if transition_signal.Value == True:

 for part in path.Components:

 part.NodeMaterial = yellow

 part.MaterialInheritance = VC_MATERIAL_FORCE_INHERIT

 delay(0.1)

 else:

 delay(0.1)

| PAGE 6 OF 8 | Highlight All

4.	 Run the simulation, verify all components that enter the path are highlighted yellow,
and then reset the simulation.

This approach works, but you need to be careful when iterating through a list of components
contained by a path. For example, parts may leave the path and in a high volume conveyor
your code might degrade simulation performance. An alternative is to use the OnTransition
event inherited by a path from vcContainer to highlight arriving parts.

5.	 In the script editor, create an event handler for the OnTransition event of the path
which changes the material of an arriving part.

def highlightPartEnteringPath(part,isPartArriving):

 if isPartArriving == True:

 part.NodeMaterial = yellow

 part.MaterialInheritance = VC_MATERIAL_FORCE_INHERIT

...

path.OnTransition = highlightPartEnteringPath

6.	 In the OnRun event, clear the code and add a pass statement, and then compile the
code.

def OnRun():

 pass

7.	 Run the simulation, verify the all components that enter the path are highlighted
yellow, and then reset the simulation.

Undo Highlight | PAGE 7 OF 8 |

Undo Highlight
There are several ways to reset parts contained by a path to their original material. One way
is to use the OnPhysicalTransition event of a vcMotionPath object.

1.	 In the script editor, create an event handler for the OnPhysicalTransition event of the
path, and then compile the code. The event handler should get the material of a part
entering the path and assign that same material back to the part when it leaves the
path. In this case, it may be helpful to use a dictionary object to store the original
material of a part.

original_materials = {}

def undoHighlightPartLeavingPath(path, part, isPartArriving):

 if isPartArriving == True:

 original_materials[part] = part.NodeMaterial

 elif isPartArriving == False:

 part.NodeMaterial = original_materials.get(part)

 part.MaterialInheritance = VC_MATERIAL_FORCE_INHERIT

...

path.OnPhysicalTransition = undoHighlightPartLeavingPath

2.	 Click the Home tab, and then add and connect an Offset Conveyor Template to the
end of the conveyor in the 3D world.

3.	 Run the simulation, verify highlighted parts are reset to their original material, and
then reset the simulation.

| PAGE 8 OF 8 | Review

Review
In this tutorial you learned how to manipulate the materials of components moving along a
path. You know how to use signals and events to identify parts entering and exiting paths and
other containers. You also know how to create event handlers for recording and resetting the
state of a component before and after it leaves a container.

	Getting Started
	Highlight First In, First Out
	Highlight All
	Undo Highlight
	Review

