
© 2015 Visual Components Oy | PAGE 1 OF 13 |

VISUAL COMPONENTS [PYTHON API]

Component States
Visual Components 4.0 | Version: March 1, 2017

A component can be modeled to have one or more defined states, which you
can control using Python API. States are created in a Statistics behavior and can
be used to control the functionality of other behaviors. For example, when a
component is in a Broken state, you can disable paths.

In this tutorial you learn how to:

▪▪ Create default and custom states in a component.

▪▪ Write a component script that can control and record component states
during a simulation.

▪▪ Write a component script that can simulate meantime between failures
(MTBF) and meantime to repair (MTTR) states in a component.

▪▪ Export state statistics collected during a simulation to a CSV file.

Support
support@visualcomponents.com

Community
community.visualcomponents.net

mailto:support%40visualcomponents.com?subject=
https://community.visualcomponents.net

| PAGE 2 OF 13 | Getting Started

Getting Started
1.	 Open the ComponentStatesStart.vcmx file for this tutorial.

2.	 Click the Modeling tab, and then in the Component Graph panel, select the Behaviors
check box, and then expand the component node tree.

The component is modeled to create parts during a simulation and move them along a path.
After a part reaches a sensor in Link1, the part is moved to the other side of the component
via a platform driven by a servo controller. A Python Script is used to define the logic of the
process and manage the servo controller.

Getting Started | PAGE 3 OF 13 |

3.	 In the Component Graph panel, under the root node, double-click Logic to access its
script editor.

4.	 In the script editor, enable Trace execution. This will allow you to know what line of
code is being executed in the script.

NOTE! Signals are connected to the script and used as conditions for moving parts.

5.	 Run the simulation, verify parts are moved from one end to the other end of the
component, and then reset the simulation.

| PAGE 4 OF 13 | Getting Started

A Statistics behavior can be added to collect data on the states of a component. Initially, a
Statistics behavior does not have any states, so you will need to create them.

6.	 Add a Statistics behavior, and then in the Properties panel, click Create default
states. This will add eight states that you can map to system states.

A system state is a constant and used for data collection. A state is defined by its label and
mapped to a system state. For example, the default Warmup and Setup states are mapped to
a WarmUp system state. That means whenever a component is in a Warmup or Setup state,
data is being generated for the WarmUp system state.

Define Idle and Busy States | PAGE 5 OF 13 |

Define Idle and Busy States
It is possible to define the state of a component by editing the State property of its Statistics
behavior, which is a vcStatistics object. For example, you can change the state of a component
to record when the component is idle and busy. To deal with state changes, you can use the
OnStateChange event.

1.	 Access the Logic script editor, and then in the OnRun event, create a variable for the
Statistics behavior.

def OnRun():

...

 statistics = comp.findBehaviour("Statistics")

2.	 In the while loop, set the state of the component to "Idle" immediately before the
condition evaluating the ServoSensorSignal.

 while True:

...

 statistics.State = "Idle"

 condition(lambda:servo_sensor_signal.Value != None)

3.	 Now set the state of the component to "Busy" immediately before the servo controller
moves a joint to 600mm.

 while True:

...

 statistics.State = "Busy"

 servo.moveJoint(0,600.0)

4.	 Create an event handler for the OnStateChange event that prints feedback about the
state of the component, and then compile the code.

from vcScript import *

def recordStateChange(stats,sim_time,state,comp):

 print state, "\t:\t", sim_time

def OnRun():

...

 statistics = comp.findBehaviour("Statistics")

 statistics.OnStateChange = recordStateChange

| PAGE 6 OF 13 | Define Idle and Busy States

5.	 Run the simulation, verify state changes are printed in the Output panel, and then
reset the simulation.

The state of a component is printed as an integer that corresponds to a system state constant.
You can modify the event handler to print more specific data about a state by using the States
and SystemStates properties of a vcStatistics object.

6.	 Edit the event handler to print a description about the new state by comparing the
state integer to data given by the SystemStates property, and then compile the code.

def recordStateChange(stats,sim_time,state,comp):

 for s in stats.SystemStates:

 if state in s:

 state = s[0] #system state description

 print state, "\t:\t", sim_time

7.	 Run the simulation, verify state descriptions are printed in the Output panel, and then
reset the simulation.

Define Failure and Repair States | PAGE 7 OF 13 |

Define Failure and Repair States
It is possible to simulate a machine failure and the amount of time it takes to repair the
machine.

1.	 Add a Distribution property, and then
in the Property task pane, rename it
"MTBF" for Mean Time Between Failure,
and then set Quantity to Time and
Value to a normal distribution with a
20.0 second average and a standard
deviation of 2.0 seconds.

2.	 Add a Distribution property, and
then in the Properties panel, rename
it "MTTR" for Mean Time To Repair,
and then set Quantity to Time and
Value to a normal distribution with
a 40.0 second average and a standard
deviation of 5.0 seconds.

| PAGE 8 OF 13 | Define Failure and Repair States

3.	 Add a Python Script behavior, and then in its editor, use the OnRun event to a create
a while loop that puts the component in Broken and Repair states, and then compile
the code.

from vcScript import *

def OnRun():

 comp = getComponent()

 statistics = comp.findBehaviour("Statistics")

 while True:

 delay(comp.MTBF)

 statistics.State = "Broken"

 delay(5)

 statistics.State = "Repair"

 delay(comp.MTTR)

4.	 Run the simulation, verify in the Output panel that the component goes through Fail
and Repair states, and then reset the simulation.

The time stamps of your System_Fail and System_Repair states might be different. You should
notice that the Logic script is ignoring failure and repair times. That is, the component should
not be moving parts while the machine is broken and being repaired. One solution is to
create a new state that indicates the component is fixed.

Define Custom State | PAGE 9 OF 13 |

Define Custom State
1.	 In the Component Graph pane, select the Statistics behavior.

2.	 In the Properties panel, under State Name, click an empty cell and name it Fixed and
then map it to Idle, thereby creating a new custom state.

3.	 In the PythonScript editor, set the component to a Fixed state after completing a
repair, and then compile the code.

 while True:

...

 delay(comp.MTTR)

 statistics.State = "Fixed"

4.	 In the Logic editor, modify the event handler to print the name of the current state,
suspend the OnRun event if the state is Broken or Repair, resume the OnRun event if
the state is Fixed, and then compile the code..

def recordStateChange(stats,sim_time,state,comp):

 print stats.State, "\t:\t", sim_time

 if stats.State == "Broken" or stats.State == "Repair":

 suspendRun()

 elif stats.State == "Fixed":

 resumeRun()

| PAGE 10 OF 13 | Define Custom State

5.	 Run the simulation, verify in the Output panel that the state of a component goes
from Broken to Repair to Fixed, and then reset the simulation.

There might be some timing issues with the execution of both scripts. For example, you might
see the component go to an Idle state before it is being repaired. One way you can try to
avoid this issue is to create a condition that checks the current state of the component before
transitioning to a new state.

6.	 In the Logic script editor, modify the event handler to only print state information, and
then create a function that returns a True value if the state of the component is not
Broken or Repair, otherwise the function returns a False value.

def recordStateChange(stats,sim_time,state,comp):

 print stats.State, "\t:\t", sim_time

def checkState(stats):

 state = stats.State

 if state == "Broken":

 return False

 elif state == "Repair":

 return False

 else:

 return True

Define Custom State | PAGE 11 OF 13 |

7.	 In the OnRun event, add a condition that calls your state checking function before you
set the component in an Idle state, and then compile the code.

def OnRun():

...

 while True:

...

 condition(lambda: checkState(statistics))

 statistics.State = "Idle"

8.	 Run the simulation, verify in the Output panel that the Idle state does not jump ahead
of the Repair state, and then reset the simulation.

9.	 In the Logic script editor, modify the event handler to stop and start the paths of the
component based on its state, and then compile the code.

def recordStateChange(stats,sim_time,state,comp):

 print stats.State, "\t:\t", sim_time

 comp = getComponent()

 paths = [comp.findBehaviour("InPath"),comp.findBehaviour("ServoPath")]

 if stats.State == "Broken" or stats.State == "Repair":

 for p in paths: p.Enabled = False

 elif stats.State == "Fixed":

 for p in paths: p.Enabled = True

10.	 Run the simulation, verify the paths of the component stop when the component is
broken and being repaired and restart when the component is fixed, and then reset
the simulation.

| PAGE 12 OF 13 | Export State Statistics

Export State Statistics
Statistics collected during a simulation can be exported and saved to a file.

1.	 Add a Button property, and then in the Property panel, rename it Export To CSV.

2.	 Add a Python Script behavior, and then in its script editor, add the following code to
define an event handler for the OnChanged event of the button that exports the state
names and times to a CSV file, and then compile the code.

from vcScript import *

import csv

import os.path

def exportStateStatistics(property):

 #setup the file

 username = os.getenv("username")

 path = os.path.join("C:\\Users\\", username, "Desktop")

 f = open(path+"\example.csv", "w")

 #collect state data and write to file

 state_writer = csv.writer(f, delimiter=",")

 state_writer.writerow(getStateData())

 f.close()

def getStateData():

 list = []

 statistics = comp.findBehaviour("Statistics")

 for state in statistics.States:

 list.append(state[0])

 list.append(statistics.getTime(state[0]))

 return list

comp = getComponent()

button = comp.getProperty("Export To CSV")

button.OnChanged = exportStateStatistics

NOTE! The script will create an "example.csv" file in your Desktop directory.

Review | PAGE 13 OF 13 |

3.	 Run the simulation to allow state statistics to be collected for a few minutes in
simulation time, and then reset the simulation.

4.	 In the Component Graph panel, select the root node, and then in the Component
Properties panel, Default tab, click Export to CSV.

5.	 On your device, verify the state statistics of the component was exported to a CSV file.

Review
In this tutorial you learned how to create and define component states during a simulation.
You know how to monitor state change events and simulate meantime between failures
(MTBF) and meantime to repair (MTTR). You also know how to use states to control the
functionality of other behaviors in a component. Finally, you know how to export state data
to a file.

