
© 2015 Visual Components Oy | PAGE 1 OF 14 |

VISUAL COMPONENTS [PYTHON API]

Control Robots
Visual Components 4.0 | Version: March 6, 2017

Python API can be used to control robots during a simulation. For example,
you can write a component script that executes subroutines in a robot program
for picking and placing parts at different locations. That, of course, would not
require you to execute the entire robot program. You can create subroutines
for tasks dynamically and automate robot motions using scripts and helper
libraries.

In this tutorial you learn how to:

▪▪ Control the actions of a robot during a simulation with a script.

▪▪ Call subroutines in a robot program

▪▪ Move and drive robot joints.

▪▪ Use helper libraries to record and automate robot routines.

▪▪ Control a robot from a different component.

Support
support@visualcomponents.com

Community
community.visualcomponents.net

mailto:support%40visualcomponents.com?subject=
https://community.visualcomponents.net

| PAGE 2 OF 14 | Getting Started

Getting Started
1.	 In the eCatalog panel, Collections view, browse to Models by Type > Robots >

Visual Components and then add a Generic Articulated Robot to the 3D world.

2.	 Click the Program tab, and then use the Jog command to select the robot in the 3D
world. In some cases, the robot will be automatically selected for you when you enable
the Jog command.

3.	 In the Program Editor panel, click Add Sequence, and then rename the new sequence
Example.

Getting Started | PAGE 3 OF 14 |

4.	 In the Jog panel, Robot section, set Coordinates to Object, and then set the Y-axis
coordinate to 500.

5.	 In the Program Editor panel, Example sequence, add a Point-to-Point Motion
statement.

6.	 In the Jog panel, Robot section, set the Y-axis coordinate to -1000.

7.	 In the Program Editor panel, Example sequence, add a Point-to-Point Motion
statement. There should now be two motion statements in the Example subroutine.

8.	 Click the Modeling tab, and then add a Python Script behavior. The script editor will
open automatically when you add the behavior.

| PAGE 4 OF 14 | Call Subroutines

Call Subroutines
The executor of a robot program can be used to call subroutines in its executable program
during a simulation. If you do not want a robot to execute its Main routine, set the IsEnabled
property of its executor to False.

1.	 On the Simulation controls, click Reset to return the robot to its initial joint
configuration.

2.	 In the script editor, add the following code to the OnRun event, and then compile the
code.

from vcScript import *

def OnRun():

 comp = getComponent()

 robot_executor = comp.findBehaviour("Executor")

 robot_executor.IsEnabled = False

 routine = robot_executor.Program.findRoutine("Example")

 if routine:

 robot_executor.callRoutine(routine)

3.	 Run the simulation, verify the robot executes the Example subroutine, and then reset
the simulation.

Another way to call routines in a robot program is to use the vcHelpers.Robot2 library.
The library contains many useful methods for controlling a robot and will be used for the
remainder of this tutorial.

4.	 In the script editor, import the vcHelpers.Robot2 library, edit the OnRun event to have
the robot call the Example subroutine, and then compile the code.

from vcScript import *

from vcHelpers.Robot2 import *

def OnRun():

 robot = getRobot()

 robot.callSubRoutine("Example")

5.	 Run the simulation, verify the robot executes the Example subroutine, and then reset
the simulation.

Move Joints | PAGE 5 OF 14 |

Move Joints
The joints of a robot can be moved individually or together during a simulation. For example,
you can use the driveJoints() method in vcHelpers.Robot2 or the moveJoint() method
available to servo and robot controllers.

1.	 In the script editor, OnRun event, drive the joints of the robot to zero value before
executing the Example subroutine, and then compile the code.

def OnRun():

 robot = getRobot()

 robot.driveJoints(0,0,0,0,0,0)

 robot.callSubRoutine("Example")

2.	 Run the simulation, verify the robot goes to its joint zero position, and then reset the
simulation.

3.	 In the script editor, OnRun event, move the third joint of the robot to 90.0 immediately
after the robot moves to its joint zero position, and then compile the code. This will
move the robot to its joint initial position.

def OnRun():

 robot = getRobot()

 robot.driveJoints(0,0,0,0,0,0)

 robot.Controller.moveJoint(2,90.0)

 robot.callSubRoutine("Example")

4.	 Run the simulation, verify the robot moves to its joint initial position, and then reset
the simulation.

Joint zero position Joint initial position

| PAGE 6 OF 14 | Pick Stationary Parts

Pick Stationary Parts
You can instruct a robot to pick stationary parts during a simulation. For example, you can use
the pick() method in vcHelpers.Robot2 to pick a component in the 3D world.

1.	 Click the Home tab, and then in the eCatalog panel, Collections view, browse to
Models by Type > Products and Containers and then add a Visual Components
Box to the 3D world and move it within reach of the robot.

2.	 In the script editor, modify the OnRun event to pick the box using the pick() method
available in vcHelpers.Robot2 with a 300.0 distance, and then compile the code.

from vcScript import *

from vcHelpers.Robot2 import *

def OnRun():

 app = getApplication()

 part = app.findComponent("VisualComponents_Box")

 robot = getRobot()

 robot.pick(part,300.0)

3.	 Run the simulation, verify the robot picks up the box, and then reset the simulation.

Pick Moving Parts | PAGE 7 OF 14 |

Pick Moving Parts
You can control a robot from a different component and instruct the robot to pick moving
parts during a simulation. The robot and the controlling component do not have to be
connected to one another. For example, you can add a component script to a conveyor that
instructs a robot to pick parts that trigger a sensor. In such cases, the pickMovingPart()
method in vcHelpers.Robot2 can be used to pick moving components.

1.	 In the 3D world, delete the box. This will not break the script in the robot used for
picking the box because the robot will be told to pick nothing in that case.

1.	 In the eCatalog panel, Collections view, browse to Models by Type > Feeders and
then add a Basic Feeder to the 3D world.

2.	 Browse to Models by Type > Conveyors > Visual Components and then add and
connect a Sensor Conveyor to the feeder in the 3D world, and then move those
components so that the sensor line is within reach of the robot.

3.	 In the 3D world, select the conveyor.

4.	 Click the Modeling tab, and then add a Python Script behavior and connect that
script to the SensorSignal behavior. This will allow the script to know what component
triggers the path sensor.

| PAGE 8 OF 14 | Pick Moving Parts

5.	 In the PythonScript_2 script editor, add the following code to instruct the robot to pick
a part that triggers the path sensor, and then compile the code.

6.	 Run the simulation, verify the robot picks a moving part from the conveyor, and then
reset the simulation.

Place Parts | PAGE 9 OF 14 |

Place Parts
You can instruct a robot to place parts during a simulation. For example, you can use the
place() method in vcHelpers.Robot2 to place a component on top of a table, pallet or
conveyor.

1.	 Click the Home tab, and then in the eCatalog panel, Collections view, browse to
Models by Type > Products and Containers and then add a Euro Pallet to the 3D
world that is within reach of the robot.

2.	 Access the editor for PythonScript_2 in the conveyor, and then in the OnRun event,
instruct the robot to place a picked part on top of the pallet, and then compile the
code.

def OnRun():

...

 #pick the part

 robot.pickMovingPart(part)

 #place the part

 pallet = app.findComponent("Euro Pallet")

 robot.place(pallet)

| PAGE 10 OF 14 | Place Parts

3.	 Run the simulation, verify the robot picks and places a part on top of the pallet, and
then reset the simulation.

Pick Parts From Pallet | PAGE 11 OF 14 |

Pick Parts From Pallet
You can instruct a robot to pick parts from pallets during a simulation. For example, you can
use the pickPartFromPallet() method in vcHelpers.Robot2 to pick components attached to
a pallet.

1.	 Access the editor for PythonScript_2 in the conveyor, and then in the OnRun event,
instruct the robot to pick up the part it placed on the pallet, and then compile the
code.

def OnRun():

...

 #place the part

 pallet = app.findComponent("Euro Pallet")

 robot.place(pallet)

 #pick same part from pallet

 robot.pickFromPallet(pallet)

2.	 Run the simulation, verify the robot picks up a part it placed on the pallet, and then
reset the simulation.

| PAGE 12 OF 14 | Record Routines

Record Routines
During a simulation you may want to record the actions of a robot as a routine in its program.
For example, you can use the RecordRoutine and RecordRSL properties in vcHelpers.Robot2
to record routines for picking and placing components.

1.	 In the 3D world, select the conveyor, and then in the Component Properties panel,
set OnSensor to Stop product. This will stop a part that triggers the path sensor.

2.	 Access the editor for PythonScript_2 in the conveyor, and then in the OnRun event,
modify the code to record two routines for picking and placing a part.

def OnRun():

...

 #record PickPart routine

 robot.RecordRoutine = "PickPart"

 robot.RecordRSL = True

 robot.pick(part)

 robot.RecordRSL = False

 #record PlacePart routine

 robot.RecordRoutine = "PlacePart"

 robot.RecordRSL = True

 pallet = app.findComponent("Euro Pallet")

 robot.place(pallet)

 robot.RecordRSL = False

3.	 Run the simulation, wait for the robot to pick and place a part, and then reset the
simulation.

4.	 Click the Program tab, select
the robot, and then verify in the
Program Editor panel that two
subroutines have been created
for picking and placing a part.

NOTE! You need to define the name of
a routine before recording. If the routine
already exists in robot, statements will
be appended to that routine. That is,
recording will not override a routine.

Place Parts in Pattern | PAGE 13 OF 14 |

Place Parts in Pattern
You can instruct a robot to place parts in a pattern during a simulation. For example, you can
use the placeInPattern() method in vcHelpers.Robot2 to place components on top of a table,
pallet or conveyor in a set pattern.

1.	 Access the editor for PythonScript_2 in the conveyor, and then in the OnRun event,
modify the code to call the recorded routine for picking parts, place the parts in an
XYZ pattern of {2,2,2} on the pallet, and then compile the code.

def OnRun():

 #get robot

 app = getApplication()

 robot_comp = app.findComponent("GenericRobot")

 robot = getRobot(robot_comp)

 #use sensor signal to initiate part pick-up

 comp = getComponent()

 sensor_signal = comp.findBehaviour("SensorSignal")

 stack_size = 8

 x,y,z = 0,0,0

 while stack_size > 0:

 triggerCondition(lambda: sensor_signal.Value != None)

 part = sensor_signal.Value

 robot.callSubRoutine("PickPart")

 pallet = app.findComponent("Euro Pallet")

 robot.placeInPattern(pallet,x,y,z,2,2,2)

 stack_size -= 1

 #x,y,z are index values

 if x < 1:

 x += 1

 else:

 x = 0

 y += 1

 if y > 1:

 y = 0

 z += 1

| PAGE 14 OF 14 | Review

2.	 Run the simulation, verify the robot stacks parts on the pallet, and then reset the
simulation.

Review
In this tutorial you learned how to control a robot with a component script. You know how to
manipulate the controller, executor and program of a robot. You also know how to use the
vcHelpers.Robot2 library to teach and record automated routines for robots.

	Getting Started
	Call Subroutines
	Move Joints
	Pick Stationary Parts
	Pick Moving Parts
	Place Parts
	Pick Parts From Pallet
	Record Routines
	Place Parts in Pattern
	Review

