VISUAL COMPONENTS [RunRobotRoutine Statement — Part I]

RunRobotRoutine Statement— Part Il

Visual Components 4.2 | Version: April 29, 2020

This tutorial is the second part of the SendSignal Statement tutorial
In this tutorial, you will learn how to:

= Use the RunRobotRoutine statement in Process Modeling layouts.

Support
support@visualcomponents.com

Visual Components Forum

forum.visualcomponents.com

© 2020 Visual Components Oy | PAGE 1 OF 6 |

https://forum.visualcomponents.com/

[RunRobotRoutine Statement — Part 1] PAGE 2 OF 6

In this section, you will create a simple layout for the purpose of this tutorial. Some of the
contents will be explained in more detail later on.

Open the SendSignal Statement tutorial layout and get these components:

eCatalog

Collections
reeders
Life Science Library
Machine Tending Library
Machines
Machines In-Line
Misc
Mobile Robotics
Packaging Library
Physics
Pick and Place Library
Process Flow Components
Process Layouts
Process Resources

Generic Articulated
Robot v4

Process Transport Controllers
Products and Containers
Robot Positioners

Robot Tools

Robot Workpiece Positioners
Robots

Single Axis Linear Actuators
Statistics

VR Interaction

Works Library

Works Pathfinding

Works Resources

|4
»
4
»
»
»
»
»
»
»
»
»
»
» Process Template Components
»
»
»
4
»
»
»
»
3
»
»
»

Models by Manufacturer

Make sure you are in the Home context. In eCatalog panel, open up the smart collection
Models by Type. Then select Robots.

Drag and drop the Generic Articulate Robot from Visual Components into the 3D world.
You may choose another robot model instead of the Visual Components generic robot..

[RunRobotRoutine Statement — Part 1] PAGE 3 OF 6

With the robot selected go to the Program context.

HOME PROCESS MODELING :] DRAWING

la Size QU] mm
./
- J O

Automatic Size
Select Move Jog) Exchange
v s Snap y, gr Robots

Clipboard Manipulation S Tools

Click on the “+” sign to add a Subprogram and set the name as Test. Double
click the name field to edit it.

Program Editor

Subprograms

B c8)

Program Editor

Subprograms

Main

* PTP P1 *NULL* *NULL*

&% PTP P2 *NULL* *NULL* 100%
¥ PTP P3 *NULL* *NULL* 100%
¥ PTP P4 *NULL* *NULL* 100%

Go to the Process context click Process and select the Process Node.
After the first SendSignal Statement which stops the conveyors, add a
RunRobotRoutine statement, so when the part arrives the routine starts.

RoutineName
Process Node:ProcessExecutor_ HIDE__

Process #1 il

1Ly Transportin: Any product as Productin

. 4. SendSignal: False on Conveyor #3:PowerOnSignal

£h RunRobotRoutine: from <This>

#-. SendSignal: True on Conveyor #3:PowerOnSignal

2, TransportOut: Productin

Select the Generic Robot as the Component and set the RoutineName as
“Test”. Since RoutineName property is an expression don’t forget to put the
name of the routine in quotes.

Process #1 i

% 1Ly Transportin: Any product as Productin

. 4. SendSignal: False on Conveyor #3::PowerOnSignal

£b RunRobotRoutine: from <This>

% SendSignal: True on Conveyor #3::PowerOnSignal
1y TransportOut: Productin

Statement Properties

Component GenericRobot

RoutineName “Test”

[RunRobotRoutine Statement — Part 1] PAGES5 OF 6

/4. Run the simulation and check that the robot is running the routine.

5. Beaware that the process waits for the routine to finish. You could, for
example, remove the Delay statement in which case the routine time would
be the time that the conveyors stop.

[RunRobotRoutine Statement — Part Il] | PAGE 6 OF 6 |

