W VISUAL
COMPONENTS

Import and export data with CSV files

Visual Components

Contents

VISUAL COMPONENTS Import and export data with CSV files

Reading from a CSV file and printing its data to the output panel........ccocvenenciiinninennn 3
WIFItING 10 @ CSV FIleuniiiiiic et 5
Stamping information from a CSV file to products.......ccoeveieiiiininnreeeen 6
Writing statistics t0 @ CSV fileu.. i 11

© 2021 Visual Components Oy | PAGE 2 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

Before continuing this tutorial, make sure that you are using Visual Components
Professional or Premium as you need to access the Modeling tab for creating Python scripts.
In case you want to read data from CSV files or write data to CSV files within your python
scripts, there are snippets already for these purposes. To understand how to use them, let’'s
have a look at some simple examples.

Consider the following data set in a Notepad which is saved as a CSV file. In there, there are
four products with specified product IDs:

Mj csv read sample.csv - Motepad

File Edit Format View Help
productl, 111
product2, 222
product3, 333

productd, 4444

Now we want to read it within a python script using the existing snippet “_CsvRead". To
access this snippet, just click on the Snippets, look for the _CsvRead, and then double-click
on it:

© 2021 Visual Components Oy | PAGE 3 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

Access the Snippets

¥ Q2% 2R 9 ™~ QFind | | [#][«][] X

1 from vcScript import *

2 You can search the

3 [Choose Snippet | snippet name if you know
_CreateStepProperty - it already

4 CreateTrianaleMesh

5 _CsvWrite *v
_ExcelRead v

6

Or you can scroll through
the available snippets and
then find it

Here is what the snippet looks like:

% NewComponent=PythonScript™

CEFPR - B9 ® Rfid | | [=][«][]
1 from vcScript import *
2
3 1mport csv
4 uri = r'C:\temp\test table.csv'
5 Hwith open(uri) as csv file:
6 csv_reader = csv.reader(csv file, delimiter = ', ")
7 for row in csv reader:
8 . print row
9

10

11

12

In our example, we just want to read from our data set saved in a CSV format. At this step,
we only need to replace the path to our CSV file in the uri and then compile the script. The
content of the CSV file will be printed in the output panel:

© 2021 Visual Components Oy | PAGE 4 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

o Newcomponmupy‘honscript' _

¥ Q- ¥ 2@R9 ™ gEnd | *a]ZX

1 |[from vcScript import *

2
3 import csv
'csvreadsample.csv-Notepad 4 uri = r' "
file Edt Format View Hep 5 with open(uri) as csv _file:
product, 111 6 csv reader = csv.reader(csv file, delimiter = ',"')
product2, 222 7 for row in csv reader: N
product3, 333 X ; — ’
productd, 444 8 print row

There is also a python snippet for writing data into a CSV file, which is called “_CsvWrite”.
You can similarly find this snippet by just searching for its name:

Access the Snippets

¥ RQl-]¥ 2@AaA9 ™ .Findl]94;/_)(
ll from vcScript import *
2
3
4 You can search the
5 [Choose Snippet | | snippet name if you know
6 _CreateLineGeometry A it already
_CreateStepProperty
7 _CreateTriangleMesh
CsvRead
| Csvwrite |9
wy

Or you can scroll through
the available snippets and
then find it

The snippet already has an example data set in it, that could be modified later:

© 2021 Visual Components Oy | PAGE 5 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

Y NewComponent=PythonScript™

¥R %$aR9 ™ Rfind | (o))
1 from vcScript import *
2
3
4 Default path for the saved csv file
5 import csv
6 uri = r'IC:\temp\test table2.csv'
7 Bwith open(uri, 'wb') as csv file:
8 csv_writer = csv.writer(csv file, delimiter = ', ")
9 csv_writer.writerow(['First', 'Last', 'Age'])
10 csv _writer.writerow(['Joe', 'Bloggs', 28])
11 csv_writer.writerow(['Jane', 'Doe', 42])

Sample data set

Once you compile the code, a CSV file will be generated with the given name in the given
directory; in this example, both the file name and the file directory were changed. And here
is how the CSV file looks if you open it in a Notepad or an Excel file:

Al mj write_here.csv - Motepad

A B C File Edit Format WView Help

1 [PP PP | First, Last, Age

2 |loe Bloggs 28| Joe,Bloggs, 28
3 |lane Doe 42, I]ane,DDe,ﬂ-E

Consider the following example where there is a feeder, two sensor conveyors, and an inline
process (get the components from the eCat and connect them as shown in the image below):

© 2021 Visual Components Oy | PAGE 6 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

Sensor conveyor

Feeder (PM)

CTJF Inline Process =l
=F
= =5
O. o
=
w0 l._ﬂ_'_
= (s V]
=3 =
o W
5 =.
m
la7] w
=
o
=7

In the Inline Process, delete the existing delay statement and create a new one with a
Uniform Distribution between 1 and 10:

© 2021 Visual Components Oy | PAGE 7 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

Now, put the ConveyorCapacity for the first Sensor Conveyor to 3 for better visual purposes:

Component Properties ¥ X

¢d

Coordinates ‘@ World C) Parent (:) Object

ConveyorCapa...

Accumulate
SpaceUtilization
RetainOffset

SegmentSize

StructureWeight [&]
RollerRadius

RollerSpacing
BeltRollers D

When the products are coming in, we want to stamp some information on to them; we want
to give them product IDs and assign materials to them. We also want to stamp the
simulation time to the products when they trigger the sensor. So, let’s prepare the ProdID
and Material data in a CSV format as following:

|
File Edit Format View Help
ProdID,Material
111 ,white
222 ,blue
333,orange
444 red

Remember what you name the CSV file and where you save it because you need to use
its path in the python script.

Now we need to tell the first sensor conveyor how the information is going to be stamped;
we do that with a python script. In our python script, we want to react when the sensors are
triggered. Therefore we need to connect our signals with our python scripts. Switch to the
Modeling tab, select the Sensor Conveyor, and then create a Python behavior:

© 2021 Visual Components Oy | PAGE 8 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

y Bfd - 1 read and write csv files.vemx - Visual C

FILE HOME PROCESS E PROGRAM DRAWING HELP CONNECTIVITY

5 I

| | B {b I Measure " Interfaces n: } @‘ (% New 4o Create Link @ \\i _@_
N7
bo-d Automatic Size % Signals H Save D Show /7

Select | Move Interact
v

Hierarchy Selected Geometry Features Tools Behaviors

v v

Delete D Always Snap B save as

Clipboard Manipulation Grid Snap Connect Move Mode Import Component Structure Geometry
Component Graph ¥ X

= Searc \) = U
= [? Sensor Conveyor
+ Properties
- %F Behaviors
+ One-WayPath_ HIDE__
~ | Ininterface
- || Outinterface
¥ SensorSignal
— ¥s StartStop
— %= SensorBooleanSignal
— - ComponentPathSensor
[H] Statistics
— || Signalinterface

[2} Processinterface
[g

[PythonScript

To connect SensorSignal to the PythonScript, select the SensorSignal behavior, and add the
PythonScript to the Connections:

Properties

Output

Once you have done that, delete all the content inside of the PythonScript and copy/paste the
following code in there; remember to modify the uri according to your file name and
location:

© 2021 Visual Components Oy | PAGE 9 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

from vcScript import *
import csv

app = getApplication ()
comp = getComponent ()
sensor_ signal = comp.findBehaviour ('SensorSignal')

def OnStart() :
global product id csv,material csv, parts stamped
parts_stamped = 0
product id csv, material csv = [], []
uri = r'.."'
with open(uri) as csv_file: # reading the csv content and storing them
into arrays
csv_reader = csv.reader(csv_file, delimiter = ',")
next (csv_reader) # remove the first row with no actual data
for row in csv_reader:
product id csv.append(row[0])
material csv.append(row[1])

def OnSignal (signal):
global parts stamped
if signal.Name == "SensorSignal" and sensor signal.Value:
part = sensor signal.Value
product id = part.getProperty ("ProductID")
material = part.getProperty("Material")
sim time = part.getProperty ("SimulationTime")
material = part.createProperty(VC MATERIAL,"Material")
if not product id:
product id = part.createProperty(VC STRING, "ProductID")
if not sim time:
sim time = part.createProperty(VC REAL,"SimulationTime")
if parts stamped < len(product id csv):
sim time.Value = app.Simulation.SimTime
product id.Value = product id csv([parts stamped]
material.Value = material csv([parts stamped]
parts stamped += 1

Now if you compile the script and play the simulation, you should see after some time that
the first four parts have different Materials, different product IDs, and also a unique
simulation time. You can check those by pausing the simulation and selecting each
component:

© 2021 Visual Components Oy | PAGE 10 OF 13 |

VISUAL COMPONENTS

read and write csv files.vemx - Visual Components Premium 4.3

@ ¥ Print Chart(s)
L Expor v

%' Geometry [[) POF

|Linear 3 Interfaces " Attach
° Angular 4 Signals o Detach 8
Geom

Import and export data with CSV files

ap | [T]Restore Windows LY Blenderer20 &8 Gitioo

() image
Statis C
pimension [Hierarchy Import Export Statistics Camera Origin My Group
Component Properties ¥ X
€d
) - ; _ - .
information to stamp.csv - Notepad Coonboates @ World O Parent O Object
File Edit Form?t View Help M 2202102 v
ProdID,Material .- Bl
111,white
The colors are matching and so are the P 222,blue Default
333,0range
444, red| Name
Material
g ® Visible
g BOM
DR Visual Components Cylinder
BOM Name [T
Category Products and Containers
POF Exportievel [
w (=) Simulation Level [Pt
=v= 1 Backface Mode |
— Mode [N
%J CylinderRadius [
=4 yiin ju
n=) a : :
=2 (VY Cylindertieight IR}
Lg m H1
—
SimulationTime [
5 Qs
=
o)
\-_/ S =
= m
=
=

Now that we have successfully read the products’ information from our CSV file and

stamped them, let us extract the same information along with *pass through time and write
them into a CSV file.

*Pass-through could be described as the difference between the time that one product
triggers the first sensor and the time the same part triggers the other sensor.

To extract the statistics from the simulation and write them to a CSV file, create a python
behavior for the second Sensor Conveyor. Let’s also connect this PythonScript to the
SensorSignal in the second Sensor Conveyor:

© 2021 Visual Components Oy

| PAGE 11 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

Let's now copy/paste the following code in PythonScript in a similar way as before.
Remember to modify the uri according to your file name and its location:

from vcScript import *
import csv

app = getApplication ()

comp = getComponent ()

sensor signal = comp.findBehaviour ('SensorSignal')

product id, material,pass through time = None, None, None

uri = r'C:\Users\MoradShl\Documents\Visual Components\4.3\Academy
tutorial\read and write csv files\statistics.csv'

def OnStart () :

with open(uri, 'wb') as csv file:
csv_writer = csv.writer(csv file, delimiter = ', ")
csv_writer.writerow(['ProductID', 'Material',
'PassThroughTime'])

def OnSignal (signal):
global product id,material, pass_through time
if signal.Name == "SensorSignal" and sensor signal.Value:
part = sensor signal.Value
if part.getProperty("SimulationTime") and
part.getProperty ("ProductID") :

sim timel = part.getProperty("SimulationTime") .Value
sim time2 = app.Simulation.SimTime
pass through time = sim time2 - sim timel

product id = part.getProperty ("ProductID") .Value
material = part.getProperty ("Material) .Value.Name
with open (uri, 'a') as csv file:

© 2021 Visual Components Oy | PAGE 12 OF 13 |

VISUAL COMPONENTS Import and export data with CSV files

csv_writer = csv.writer(csv file, delimiter =

',',lineterminator="\n")
csv_writer.writerow([product id, material,

pass_through time])

Now if you compile the script and play the simulation and wait until the first four products go
past the Inline Process and stop the simulation, there should be a CSV file generated based

on your given name and path:

MJW statistics.csv - Motepad

File Edit Format View Help
FruductID,Material,PaSSThruughTime
111,white,19.7592215774
222,blue,32.489988442
333,orange,42.7288524371

A4 red,54. 8778922793

If you let the simulation play for longer, there will be more lines written in the CSV file.
Checking the information in the generated CSV file and comparing it with the given inputs
and simulation visuals, we have now successfully extracted information from our simulation

and saved them into a CSV file.

You can find the complete layout for this tutorial attached to this document. Remember
when you open the layout, you get an error about the uri of the CSV file. So remember to

modify it.

© 2021 Visual Components Oy | PAGE 13 OF 13 |

