
VISUAL COMPONENTS [Optimizing Simulation Performance]

© 2023 Visual Components Oy | PAGE 1 OF 17 |

Support
support@visualcomponents.com

Visual Components Forum
forum.visualcomponents.com

Optimizing Simulation Performance
Visual Components 4.6 | Version: February 15, 2023

Simulating larger layouts with increased speed, requires consideration when creating the
components and layout. This lesson will introduce the basic concepts used to achieve the
best possible simulation performance.

In this tutorial, you will learn:

 Concepts of geometry simplification
 Concepts of implementing simulation behavior for better performance
 Running simulations with proper settings
 Taking performance into account when developing custom component scripts
 How to profile the performance of a layout

https://forum.visualcomponents.com/

[Optimizing Simulation Performance] | PAGE 2 OF 17 |

Contents
Geometry .. 3

Geometry Importing ... 3

Geometry Simplification .. 4

Addons for geometry cleanup ... 6

Geometry Memory Consumption ... 6

Conclusion regarding geometry .. 7

Simulation Behavior ... 7

Simplify the simulation behavior ... 7

Prefer component behaviors over Python scripting .. 8

Model rebuilding and updating ... 8

Some best practices for model design .. 9

Running the simulation .. 10

Simulation clock setting .. 10

Rendering mode .. 10

Joint limit checking .. 11

Statistics interval ... 11

Simulation Level .. 12

Python scripts ... 13

Utilize events in scripts .. 13

Store objects to variables .. 13

Using Print statement ... 14

Rebuilding ... 14

Hiding and showing geometries during simulation ... 15

Updating the scene ... 15

Creating dynamic components .. 15

Reuse objects .. 16

Avoid context switch ... 16

Profiling the layout performance ... 16

Profiler Addon ... 16

[Optimizing Simulation Performance] | PAGE 3 OF 17 |

Geometry
Although rendering is not always a bottleneck, it is recommended to create models that are
as lightweight as possible. When creating large layouts, it is better to exclude all details from
each component in the scene. This includes all nuts and bolts and other tiny fixtures that do
not add value to the simulation. Often CAD models from machine vendors or mechanical
design departments are too detailed, and so must be simplified.

Geometry Importing
Make the right choices at the beginning. If possible, try to obtain an already simplified CAD
model. Use as low a Tessellation quality as possible when importing a CAD model. And it is
important to use the options included in Import model panel, to filter out the small
geometry items and holes already at the import phase.

Before importing a model, use the Analyze command in the Import model panel to check
how much data you are about to import. Pay extra care to any models you plan to clone
multiple times in the layout, like for examples CNC machines, conveyors, fences, etc.

Feature Tree defines what hierarchy to use for geometry.

• If Full is selected, an attempt will be made to match the structure of the model when
viewed in its native CAD editor. Full creates feature tree based on CAD's assembly
tree, meaning that each item in the assembly tree will be its own feature. A feature
containing geometry generates a geometry feature, otherwise a transform feature.

[Optimizing Simulation Performance] | PAGE 4 OF 17 |

• Optimized generates a flat structure of feature tree, without extra transform
features.

• Collapsed creates only one geometry feature. This option can be used to reach
optimal performance when detecting the geometry with collision check, ray cast and
volume detection.

Organize geometry defines how the geometry will be organized into geometry sets.
Geometry sets can be sliced, exploded, or collapsed.
NOTE: Use By material or Collapsed as default options.

• By faces will make each face as own geometry set. This is not recommended unless
needed for specific topology use cases, so only use if required.

• By material option creates own geometry set for each color in a single mesh. Some
CAD formats can define different colors in different faces in a single mesh, but in
Visual Components there can be only one material per geometry set.

• Collapsed combines all the meshes into one geometry set. However, to optimize the
performance, a new set will be created when the total amount of triangles exceeds
10,000 (or 16,000 points).

• Mathematical data will organize geometry one set per face and store a BREP entity
in a triangle set creating a larger geometry and file size. Used for special scenarios,
for example when special accuracy is needed in robot offline programming.

Geometry Simplification
Once a model has been imported, it can be simplified further. Consider using the Cylindrify
and Blockify commands, available from the Tools option in the MODELING tab.

Those commands will convert the selected geometry sets to simple cylindrical or block
shapes, and in some cases saving thousands of triangles without losing too much of the
overall shape of the device.
NOTE: Be careful with these commands as they are destructive and cannot be undone.
Create backup copies of layouts including imported models, before you begin using these
options.

Also consider using Decimate command, that attempts to create the same shape as the
selected geometry sets but with less triangles. And the same applies to Decimate as for the
Cylindrify and Blockify commands. The undo action cannot be used with these.

[Optimizing Simulation Performance] | PAGE 5 OF 17 |

The original and the result of using the Blockify command is shown in the image below. The
triangle count for each guide rail decreased from 2276 triangles down to 24 triangles.

Also consider if some shapes can be represented with simple representation, by using the
primitive geometries available inside the Visual Components (VC) application.

Also remove any details that nobody will ever see. Like details inside electric motors or
behind covers that are never revealed during the simulation. The Wireframe or X-ray
shaded rendering modes are great for checking if something unnecessary is hiding inside
the imported CAD model.

[Optimizing Simulation Performance] | PAGE 6 OF 17 |

Addons for geometry cleanup
On the Visual Components Forum, you can find addons that help the process of geometry
simplification. Triangle Count addon helps to find the most geometry heavy components
and features in the layout. Auto Materialize addon helps to remove unnecessary tiny details
or to decimate shapes with certain sizes.

Geometry Memory Consumption
The Geometry feature inside the VC application has a property called OnDemandLoad.
When enabled, the respective geometry is loaded into memory only when the geometry
must be visualized. So for example, if the geometry is hidden with the help of switch
feature, the geometry is not loaded into the scene until it is needed. This will make loading
and saving models faster.

When cloning (or copy/paste) components in the scene, the geometry of the cloned
instances is shared with the original. Shared geometry is easy to notice on the modelling tab
when selecting a feature, and the same selected feature is highlighted (green) in all cloned
instances. This is intentional and helps to consume less memory in the scene.

Auto Share and Make component unique commands can be found in the 3D context menu
under Tools sub menu.

https://forum.visualcomponents.com/

[Optimizing Simulation Performance] | PAGE 7 OF 17 |

If the sharing must be broken, to for example edit the geometry of one cloned instance, the
Make Component Unique command can be used. Also changing any property that forces a
model to rebuild (e.g., ConveyorLength or component Material) will also break the sharing.
If the cloning is broken, but there are similar instances of the same component, the Auto
Share command can be used to reshare the geometry representation of similar components
in the scene.

Auto Share is a great tool to share the geometries of similar components in the scene that
were not originally cloned. If e.g. two similar conveyors are loaded to the scene from the
eCatalog which have the same property settings in the scene, they will share their geometry
representation if the Auto Share command is used. Shared geometries will also improve the
rendering performance.

Conclusion regarding geometry
In general, heavy geometry will affect the overall performance of the simulation. Affecting
these (but not limited to these) aspects:

• Rendering performance.
• Performance of the collision check, ray casting and volume detection.
• Performance of the possible geometry rebuilds.
• Layout loading and saving times.
• Also, heavy geometry consumes memory, which might be a limiting factor in some

cases.

Simulation Behavior
The way simulation behavior is implemented, is the most critical factor affecting overall
simulation performance. Creating the model in the correct way and simulating only the
necessary details is the way to achieve the best possible simulation performance.

Simplify the simulation behavior
Simulating only that which adds value is a great starting point:

• Before creating the model, think again about why it was created.
• If the purpose is not to create videos with close ups of details, consider excluding all

possible unnecessary details.
• Do not add details that do not serve a purpose. Exclude simulation (animating,

adding motion) of human walk cycles, parts dropping into bins with gravitation,
complex clamp mechanisms and small details inside the machine that nobody will
ever see.

• Avoid creating components that can do everything. A versatile component that can
be used in all use cases is great, but it is also extremely hard to model such logic
without sacrificing simulation performance.

The components in the public online library (eCatalog) provided by Visual Components are
modeled for a generic purpose. They are modeled to be suitable for as many use cases as
possible, and this versatility sacrifices the simulation performance a little. Although in

[Optimizing Simulation Performance] | PAGE 8 OF 17 |

general, the models in the online library can be considered to be modeled the “correct”
way. In some cases, consider creating a simple single purpose component, instead of
utilizing one of the flexible online library components.

After all, we are creating visual simulations in Visual Components, so we do not exclude all
the visual aspects from the simulation, so that the simulation will communicate the
intended results in an understandable way. Just start creating the model by adding the basic
functionality and the overall flow. Then at the end, add all the necessary details.

Prefer component behaviors over Python scripting
Custom Python scripts allow you to extend the functionalities of models when no built-in
behavior is available. However, whenever possible, use the built-in behaviors, since they are
executed in the simulation core, and thus do not require a performance-heavy 'context
switch' (i.e., Visual Components needs to switch between the execution of the simulation
core and the Python engine). Therefore, even the most optimized Python script is slower
than the built-in behaviors.

Model rebuilding and updating
When creating new component properties, disable Rebuild and Update simulation options
if they are not needed. If Rebuild is checked, the model geometry tree is re-evaluated and
re-generated when the property value is changed. This is necessary for properties like
conveyor height, to see the value change effect in the component geometry.

However, if there is a property that is used for instance as a counter during simulation,
leaving a Rebuild flag on for such a property can seriously affect performance, as the
geometry of the component is re-evaluated each time the counter value is changed during
the simulation. Design the components so that they will not need rebuilding during
simulation. Implementing dynamic geometrical changes (like moving links) must be
implemented using the node (i.e., link) tree in the component graph instead of the feature
tree. Update Simulation should be disabled also if the property is not needed in the link
tree. However, simulation update for one single component is fast and does not effect on
the simulation performance as much as rebuilding.

[Optimizing Simulation Performance] | PAGE 9 OF 17 |

For example, if a frame feature must be repositioned during the simulation, it is better to
place the frame under a link that is moved during the simulation instead of placing the
frame feature under a transform feature which is modified with a parametric expression.
Updating the transform feature requires a rebuild but updating the location of the link
requires only the simulation update. See the image below how property settings relate to
the expressions in the component structure in the component graph.

There is an addon on the Visual Components Forum, that analyzes all the components in the
scene and disables the Rebuild flags of the properties that are not used in the feature tree
expressions. This helps prevent unintentional rebuilds but does not fix badly designed
components that require rebuilds during simulation run. Search for addon names “Optimize
the property Rebuilds”

Some best practices for model design
• Create all necessary properties, features and behaviors in design phase. Do not

create them during runtime dynamically in scripts. This applies to the properties in
the dynamic components (i.e., products on the production line) too. Create the
necessary properties to the product components before running the simulation if
possible.

• Fix all expression issues. Geometry feature tree or Component link tree may have
complex expressions. This is not considered as a bottleneck to the performance.
However, if there are errors in the expressions it is a major performance issue. Errors
are printed on the output panel. Each time an error occurs, the expression is re-
evaluated, and this causes performance issues.

• Prefer using built-in behaviours over custom scripts when possible. Use signals,
sensors, paths, capacity controllers, routing rules etc.

https://forum.visualcomponents.com/
https://forum.visualcomponents.com/t/optimize-the-property-rebuilds/504
https://forum.visualcomponents.com/t/optimize-the-property-rebuilds/504

[Optimizing Simulation Performance] | PAGE 10 OF 17 |

• Use Process Modeling feature. Much of the simulation flow and logic of machines
and devices can be modeled with the Process Modeling capability. Familiarize
yourself with the Process Modeling feature with the lessons and courses available on
the Visual Components Academy, and try to implement most of the simulation
utilizing those capabilities and minimize the amount of custom scripting.

• In Robots the Python kinematics solver is slower than built-in kinematic solvers. If
possible use the built-in solvers, and in projects where you can more freely choose a
robot model, try to choose one that does not use Python kinematics. Also, if
possible, try to use more PTP (Point to Point) type motions instead of linear motions
with robots with inverse kinematics, as it is a less calculation demanding motion
type.

• Avoid using Raycast and Volume Sensors if possible, instead prefer e.g. Path Sensors.
If Raycast or Volume Sensor types are required, pay attention to the frequency those
sensors are utilizing by adjusting the sample time property, or consider disabling
sampling and connect a signal to the sensor to trigger the sensor only when it is
needed.

• In conveyor systems, use Accumulate, RetainOffset and SpaceUtilization in the path
behaviors, only if they are really needed

Running the simulation
Although the most crucial factor to simulation performance is the way the model is built,
there are still certain things that must be considered when running simulations to gain
maximum performance.

Simulation clock setting
Simulation run settings can be found on the top of the 3D panel. In the settings, set the
Simulation Mode to Virtual Time. It is slightly faster to run the simulation in the Virtual
Time mode than Real Time, as the simulation does not need to match the simulation time
to real (Windows) clock.

Rendering mode
When simulating fast, the rendering is not called that often and the scene is rendered only
to keep the 3D window up to date. But even so using the simpler Shaded rendering mode,
compared to more demanding rendering modes like Realistic Shaded, will increase the
simulation performance. This is a more noticeable improvement in scenes with a large
amount of 3D data.

[Optimizing Simulation Performance] | PAGE 11 OF 17 |

Joint limit checking
Making sure that none of the joints in the devices are exceeding their limit values is often
one reason to simulate. Joint limit checking is however a bit of a demanding task for the
simulation engine. If the joint limits are already being checked and verified, it is
recommended to disable the limit checking to run simulations faster.

Disable joint limit checking when it is not needed. Disable all joint limit options on the
Program tab. This one setting applies not only to all robots in the scene, but to all devices
that have servo joints and motions.

Statistics interval
Gathering statistics is essential when simulating to analyse the simulation either after or
during the simulation. However, gathering statistics with a short interval will impact the
simulation performance. If the simulation run is long, like multiple weeks, the statistics data
may not be needed with the default 60s interval. Consider increasing the statistics Interval in
the Home tab ribbon bar.

[Optimizing Simulation Performance] | PAGE 12 OF 17 |

Simulation Level
Use the Simulation Level feature in multipurpose components. Simulation Level option can
be found in the Component Properties panel for each component.

And a Simulation Level option is available under the simulation configuration settings for
the whole layout level (applies to all components). Simulation behavior for each component
must be implemented separately to support Simulation Level feature.

For example, in Fast mode some servo motions can be replaced with simple delays in
scripts. The only behavior that automatically uses Fast mode is a physics cable. The rest of
the support is in Python scripts. Some online catalog library models utilize this feature by
controlling the level of simulation details in the component implementation. For example,
the Process Modeling resources in the online catalog utilize the simulation level feature. If
there are no components in the scene that utilize the Simulation Level feature, the option
in the settings is disabled.

Add this event method to a component script to register the component to utilize the
Simulation Level

[Optimizing Simulation Performance] | PAGE 13 OF 17 |

Python scripts
In general, it is better to implement simulation logic with built-in behaviors, statements in
the Process Executors and/or in Robot programs. But to achieve the necessary logic Python
scripts are often needed. To maximize the simulation performance certain aspects in scripts
must be considered.

Utilize events in scripts
Instead of testing certain conditions repeatedly (polling) with a high frequency, it is better to
utilize events and model the logic with discrete events. In the example scripts below, above
is an example of a polling logic not preferred, while below the same logic is implemented
with an event-based approach, and is faster to execute and will give a more accurate result.

Store objects to variables
Instead of using getComponent(), getSimulation(), getApplication(), findBehavior(),
getProperty() methods all over the script and calling these methods during run time, cache
the objects to variables. Calling these methods to get the handle to the object during
simulation will slow down the simulation performance. It is better to obtain all objects and
store them into variables before the actual simulation logic starts. Usually, there is a while
loop inside the OnRun function. Obtain the required objects before the while loop like
shown in the image below.

[Optimizing Simulation Performance] | PAGE 14 OF 17 |

Using Print statement
Although, printing messages into the Output panel when developing Python scripts is
useful, it is recommended to remove all unnecessary printouts from completed scripts, as
they will influence the performance of the simulation. On top of this, a clean Output panel is
easier to follow than a panel full of test prints from different components in the layout.

Rebuilding
As mentioned in the Simulation Behavior section of this lesson, the rebuilding of geometry is
heavy, so this must also be considered when developing scripts. Create the logic and the
structure of the models so that the vcComponent.rebuild() or vcFeature.rebuild() methods
are not needed during the simulation run.

Also, when switching the color (i.e., material) of a component during simulation, avoid using
the vcComponent.Material property. Use vcNode.NodeMaterial instead, as the
NodeMaterial changing does not require component rebuild. Refer to the bad and good
example below.

In the bad example the necessary objects are obtained during the simulation run in the
while loop repeatedly. Also, the component material of the part object is changed during
simulation that forces the component object to rebuild.

[Optimizing Simulation Performance] | PAGE 15 OF 17 |

In this good example the objects are stored into variables before the while loop and instead
of vcComponent.Material property, the vcNode.NodeMaterial property is changed. This
won’t require rebuilding, but requires setting of the material inheritance to define where
the node material is applied in the model. Force inherit overwrites all material settings in
the part object. This good example is also more readable and easier to maintain.

Hiding and showing geometries during simulation
If certain parts of the model geometry must be hidden or shown during the simulation, it is
better to use the component link tree again instead of the feature tree. Avoid using the
switch feature for showing and hiding items during simulation. Switch feature is great for
parametrization of component that does not need to change during simulation.

For example, to model a conveyor that can be configured to represent a roll conveyor or a
belt conveyor. To show and hide geometry during simulation run, add links and parts of the
geometry that must be shown or hidden under those links. Then during simulation use
vcNode.Visible property to show and hide the items. This is extremely fast compared to
switch feature that requires geometry rebuild.

Updating the scene
Some modifications in the scripts require updating. For example, to relocate a node using
vcNode.PositionMatrix property requires a node update after setting a new matrix value.
Instead of using vcSimulation.update(), use vcNode.update() to update only that node that
requires updating.

Creating dynamic components
As mentioned in the simulation Behavior section of this lesson, using the built-in
functionality of the built-in behaviors is faster than replicating the same in a script. When
dynamic components must be generated for the simulation, it is better to use Component
Creator and Product creator behaviors rather than calling vcApplication.cloneComponent()
method during the simulation.

Also, try to add all properties, features and behaviors to the dynamic components before
generating them into the line. Use vcComponentCreator.TemplateComponent to access the

[Optimizing Simulation Performance] | PAGE 16 OF 17 |

component to be created before creating it. Or when using vcProductCreator use Product
Editor on the PROCESS tab to edit the products to be created.

Keep dynamic components as simple as possible as there can be thousands of instances of
the same component on the line. Also, avoid adding Python scripts and other behaviors to
the dynamic components.

Reuse objects
Reuse objects as much as possible instead of recreating them. For example, vcMatrix objects
can be reused, instead of re-creating them repeatedly with vcMatrix.new() constructor. Use
vcMatrix.identity() method to reset an existing matrix to default zero location.

Similarly, vcMotionTarget and vcAction objects can be recycled to improve performance.

Avoid context switch
When simulation execution must switch between the simulation core and Python execution,
it impacts the simulation performance negatively. Context switch from the Python to
simulation engine happens every time the simulation must update or consume simulation
time. For instance, when using delay() method, the execution from Python script must jump
to simulation core to consume the given simulation time, and after that jump back to
Python execution.

It is better to do as much Python calculation as possible at the same time, rather than a lot
of context switches. Often context switches are hard to avoid, but it is good to understand
the concept when trying to optimize the last bits of the simulation performance.

Other examples of methods forcing context switch are: vcServoController.move(),
triggerCondition(), condition(), delay(). In addition, vcSimulation.update() causes context
switch in certain layout/component configurations.

Profiling the layout performance
When the layout is done and the performance should be improved, but it may be hard to
know where to start the profiling.

Profiler Addon
There is a profiling addon available on the forum that will reveal which components in the
layout are most demanding, and it helps in understanding where the bottle neck in the
simulation performance may be.

[Optimizing Simulation Performance] | PAGE 17 OF 17 |

The “Profiler” addon will give a result that shows the total system time spent and the top 20
most performance expensive components in the layout, along with the number of calls to
component behaviors including Python scripts and the amount of system time spent per
component. All data (beyond the top 20 list) is dumped to a file located in a folder shown in
the output message.

https://forum.visualcomponents.com/t/profiler/950/2

	Geometry
	Geometry Importing
	Geometry Simplification
	Addons for geometry cleanup
	Geometry Memory Consumption
	Conclusion regarding geometry

	Simulation Behavior
	Simplify the simulation behavior
	Prefer component behaviors over Python scripting
	Model rebuilding and updating
	Some best practices for model design

	Running the simulation
	Simulation clock setting
	Rendering mode
	Joint limit checking
	Statistics interval
	Simulation Level

	Python scripts
	Utilize events in scripts
	Store objects to variables
	Using Print statement
	Rebuilding
	Hiding and showing geometries during simulation
	Updating the scene
	Creating dynamic components
	Reuse objects
	Avoid context switch

	Profiling the layout performance
	Profiler Addon

